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1 Introduction  

Increased urbanization around the world comes with less pervious surfaces and higher peaks of 

stormwater outflow following rainfall. Detrimental consequences include increased flooding, stream bank 

erosion, and pollutant loads among many others (Tsihrintzis and Hamid 1997; US EPA 2015; Winston R. 

J. and Hunt W. F. 2017; Müller et al. 2020; Kriech and Osborn 2022). Many stormwater control measures 

have been designed and implemented in the field to mitigate detrimental stormwater effects (reviewed by 

Prudencio and Null (2018)). In urban environments, there are numerous stormwater outlets where 

installing and maintaining traditional sensors to calculate flow is difficult and expensive. Image-based 

methods offer the possibility for a more accessible, cost-effective, and possibly more accurate alternative, 

although it comes with its own challenges.  

In hydrology, computer vision has been used for measuring water level and water surface velocity 

(e.g., Birgand et al. 2013; Chakravarthy et al. 2002; Kaplan et al. 2019; Lin et al. 2018; Noto et al. 2022; 

Schoener Gerhard 2018; Takagi et al. 1998; Jeanbourquin et al. 2011; Jodeau et al. 2008; Kantoush et al. 

2011; Fujita et al. 1998; Wu et al. 2019; Kim and Kim 2020; Fujita et al. 2019; Engelen et al. 2018; 

Holland et al. 2001; Bradley et al. 2002; Creutin et al. 2003; Hauet et al. 2008; Muste et al. 2008), and 

images are being used as an active monitoring tool (e.g., USGS 2022; Birgand et al. 2022). Image-based 

measurements are then used to estimate discharge, i.e., the volume of water passed by a point per unit 

time (e.g., Hauet Alexandre et al. 2008; Le Coz et al. 2010; Peña-Haro et al. 2021; Le Coz et al. 2021; 

Chahrour et al. 2021; Tsubaki et al. 2011; Bechle Adam J. et al. 59 2012; Ji et al. 2020; Zhao et al. 2021). 

Image-based methods offer additional benefits over traditional techniques, including non-contact sensing, 

access to the velocity field at the surface of the water, access to additional information about 

environmental conditions, visual verification, access to the ‘raw’ data, and openness to reanalyzing 

images using improved algorithms and developments (Hauet Alexandre et al. 2008; Birgand et al. 2022; 

Chapman et al. 2022; Zhang et al. 2019b; Eltner et al. 2021). Additionally, the development of 

communication networks has opened new possibilities to the field, such as the possibility of distant data 

interpretation or cloud computing (Pan et al. 2018; Yu and Hahn 2010). This subsequently obviates the 

need for field calibration and high-level maintenance at short periodicity, requiring fewer field 

maintenance visits from high-skill personnel (Pan et al. 2018).  

Images have typically been used to measure water stages and videos to estimate surface velocity 

of the water. Traditional machine vision techniques (i.e., not using machine learning) have classically 

been used to measure water level in relatively calm waters (Fujita et al. 1998; Takagi et al. 1998; Bradley 

et al. 2002; Chakravarthy et al. 2002; Creutin et al. 2003; Fujita et al. 2007; Iwahashi and Udomsiri 2007; 
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Jodeau et al. 2008; Hauet Alexandre et al. 2008; Kim et al. 2008; Iwahashi et al. 2007). Most studies 

report values within ±10 mm (Nguyen et al. 2009; Kim et al. 2011; Hies et al. 2012; Lin et al. 2018; Pan 

et al. 2018; Zhang et al. 2019c; Hansen et al. 2017), although Birgand et al. (2022) reported uncertainty to 

be within ±3mm 70% and ±5mm 90% of the time in the field. Two categories of methods are currently 

used for measuring water surface velocity based on images: motion estimation and feature-point tracking 

(Jeanbourquin et al. 2011). Deep learning models have also been used to measure the velocity of water in 

coastal areas, based on principles similar to motion estimation methods (Kim and Kim 2020).  

Given the highly variable contextual conditions in field images, deep learning approaches may be 

a more suitable choice for water stage monitoring, compared to classical computer vision techniques. Not 

surprisingly, deep learning approaches have been reported in image-based hydrological monitoring. Pan 

et al. (2018) reported on a deep learning system for water level detection and surveillance. Gupta et al. 

(2022) proposed a ranking system for stream stages based on convolutional neural networks (CNN).  

Stormwater is often routed in circular pipes and culverts, until it is discharged into receiving 

bodies, i.e., often directly into the receiving streams. In large pipes, images and videos have been 

recorded from inside the pipes for monitoring (Nguyen et al. 2009; Jeanbourquin et al. 2011; Haurum et 

al. 2020; Ji et al. 2020). Most stormwater outlets are too small for such applications. However, because of 

their circular pattern, culverts and pipes have the potential to be automatically recognized using machine 

vision approaches, from images taken from cameras outside and facing the conduits in field conditions.  

Deep learning models thus offer a great potential to address many of the theoretical difficulties of 

monitoring stormwater outflow. However, AI-based models have high computational intensities and 

requirements, which is not compatible with edge devices equipped with relatively low computational 

capabilities. Edge devices are associated with edge computing where raw data are analyzed in situ by 

mini-computers embedded in the sensors, as opposed to cloud computing where the raw data are sent to 

the cloud for analysis. Unless one can show that much lighter models can provide reliable results, the 

application of deep learning models for hydrological monitoring and other high-precision monitoring may 

be compromised on edge devices.  

In this report, we explore the use of two deep learning methods to automatically measure the 

water stage at the mouth of stormwater outfalls from images taken by inexpensive time lapse cameras. 

Our objective is to assess how a computationally light model that could be run on edge devices, compares 

to a reference computationally intensive model. Our reference model is a deep learning model based on 

the Mask R-CNN architecture (He et al. 2017). Our light model is a deep learning model based on the 

YOLOv8 architecture (Jocher et al. 2023). We use indicators of performance, i.e., dimensions of culvert 
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diameter and water levels read manually on images in the field, and computational times for our 

assessment.  

2 Methods  

Deep learning models applied to images and videos require several steps to train. It is important 

to explain the process in simple terms, illustrating why these models are complex and computationally 

demanding. In our stormwater monitoring application, we train models for two cases: culverts with and 

without water. For the first case, we manually highlight the empty area between the water level and the 

culvert’s top, and tell the model, “This is a culvert with water”. In the second case, we highlight the entire 

empty culvert and tell the model, ‘This is an empty culvert.’ With enough images from various sites, 

angles, and lighting conditions, the deep learning models learn to automatically recognize culverts with 

and without water in most new images (outside of the training set). The models initially provide results in 

pixel coordinates, which can be converted into real-world measurements.  

Below, we provide details for our Mask R-CNN and YOLOv8 models. We also outline our 

approach for comparing the performance of these two models.  

2.1 Deep learning models used  

The next step involving transforming measurements from the image coordinate system into a 

real-world coordinate system is presented afterwards. Given the utilization of deep learning structures in 

the models developed in this study, it is imperative to train them using a diverse dataset representing real-

world scenes of stormwater structures and outflows. Generally, the training dataset includes images with 

detailed information on the location of the features the model aims to detect. Practically in our case, the 

training dataset consisted of images from cameras looking at stormwater outlets and the manually labeled 

‘culverts with and without water’ information. This necessary process, which is referred to as labeling or 

annotation, is labor-intensive and requires human observers manually marking the features over images 

through annotation software. In this study, the image dataset used to train the network was collected from 

three different sites on NC State University campus in Raleigh, North Carolina. The choice was guided by 

the short distance from our laboratory for maintenance and observations. The dataset also includes images 

of a lab stormwater outlet prototype, as well as images downloaded through Google Images licensed 

under a Creative Commons (CC) agreement 1(Figure 1). The image annotation was carried out using the 

 
1 devoted to educational access and free of charge to the public 
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RectLabel software given its ease of use, robustness, and capability to provide the annotation files for 

various machine learning and deep learning architectures.   

 

 
Figure 1: Representative sample images, along with their annotations, from various sites at North 

Carolina State University (NCSU) and surrounding areas: (a) Softball Field site; (b) Centennial 

Campus site; (c) Edward Mills Road site; (d) Motorpool site.  

 

When training deep learning models, training data are used as inputs to optimization algorithms 

(like gradient descent variants) to tune model parameters. This aims to minimize the model’s error in 

recognizing features, a concept known in machine learning terminology as empirical risk. Within this 

approach, the empirical risk relationship, which is typically defined as the mean of errors, or losses, for 

every training data, could be viewed as the signal generator which is dispatched through the network and 

changes the parameters to the extent of the received signal strength.  

2.1.1 Reference deep learning model: Mask R-CNN  

The reference model was developed using the Mask R-CNN architecture, an instance 

segmentation framework that identifies and outlines object boundaries as defined during the annotation 

process (He et al. 2017). Using this model, the training data was labeled so that the model could delineate 
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the unoccupied area of the culvert within its inner boundaries when there was an outflow from the system, 

and the entire inner boundary of the culvert when there was no flow (Figure 2). As a result, subtracting 

the mask during the flow event from the mask corresponding to the no-flow condition gave the area 

occupied by the flow at the outlet.   

 

 

Figure 2: The models capture the empty outlet (a) and the empty area of the culvert (b). 

Subtracting these two areas gives the flow area, which is marked in blue in (c) 

 

The Mask R-CNN architecture is a state-of-the-art (SOTA) instance segmentation and 

pose detection model and was originally introduced as an extension to the Faster R-CNN 

architecture (He et al. 2017; Ren et al. 2017). This structure is composed of a cascade of 

components and provides three types of outputs: object masks which delineate the boundaries of 

the objects present in the scene; localization information in the format of rectangular areas tightly 

encompassing the objects; and classification information for each of the detections. Upon 

unraveling the input data into a vector format, which is a common first step with computer vision 

deep learning structures, the Mask R-CNN architecture initially processes the data through a 

feature extractor network2. The feature extractor network is a deep neural network (DNN) that 

compresses the input image into something called a feature map. The initial layers of the feature 

extractor network handle low-level, general features, like the edges, while the deeper layers 

 
2 The feature extractor is a model which translates features, ranging from edges and textures to the objects 

present in the scene, into an abstract representation in a way which is comprehensible for the downstream 

components responsible for the designated target. This layered model processes images and videos primarily 

through filters, which can be thought of as windows sweeping across the image area. After each layer, the next layer 

window sweeps through points obtained from the previous layer’s window locations. The actual representation of 

each window is called the receptive field, indicating the area of the original image considered when generating the 

output for that layer. 
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address more high-level features due to the increased receptive field of these layers (Redmon et 

al. 2016). To better understand the concept of receptive fields, we should focus on how the 

convolution mechanism operates over two-dimensional inputs.  

A fully convolutional neural network (CNN) is composed of multiple layers, with each 

layer receiving input from the output of the previous layer. Within each layer, multiple filters 

(matrices of odd dimensionality) slide over the input, performing element-wise multiplication 

with the corresponding region of the input and summing the results. This result then replaces the 

central value of the filter’s position over the input. Consequently, as an image passes through the 

layers, its dimensions shrink, but each value represents a larger region of the original input. In 

computer vision, this region is known as the receptive field.  

The second component of the Mask R-CNN architecture is the region proposal network 

(RPN), which is responsible for generating bounding boxes that likely contain objects. The idea 

of using bounding boxes with the possibility to include objects is common among the object 

detection and segmentation models. The following components of the models refine these 

regions to accurately locate and segment the objects. Before the introduction of the RPN, 

networks relied on either external, non-integrated components for region proposals or a grid-

based approach. While external bounding box generators were functional, they lacked 

adaptability to the specific characteristics of the training data. This often led to the generation of 

an excessive number of boxes, necessary to achieve sufficient precision in object detection. 

Consequently, the computational overhead increased, slowing down the entire process (Ren et al. 

2017). The grid-based approach, while faster, lacked the precision necessary for accurate object 

detection, making it unsuitable for instance segmentation applications (Redmon and Farhadi 

2017). In contrast, the RPN is trained alongside the rest of the network, allowing its bounding 

box proposals to adapt to the training data. This leads to more accurate proposals, enabling the 

network to achieve the desired precision with fewer boxes and less computation. As a result, this 

significantly improves the network’s overall response time. The clear advantage of the RPN is 

evident in the performance comparison between Fast R-CNN and Faster R-CNN. While Fast R-

CNN, relying on the selective search method with 2,000 region proposals, Ren et al. (2017) 

reported Fast R-CNN to achieve a mean average precision (mAP) of 70%, its frame rate was 0.5 

frames per second (fps). In contrast, Faster R-CNN, leveraging the RPN for proposal generation, 

required only 300 proposals to achieve a mAP of 73.2%. Remarkably, it also achieved a 
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significantly faster frame rate of 17 fps (Ren et al. 2017). The concept of using a dedicated 

component for generating region proposals proved so influential that it was adopted by other 

architectures, like YOLO, due to its efficiency and precision (Redmon and Farhadi 2017).  

The Mask R-CNN architecture’s third and key innovation is the Region of Interest (ROI) 

Align layer. Its predecessor, Faster R-CNN, relied on pooling operations like max pooling to 

downsample region proposals. This involved dividing the ROIs into a grid and selecting the 

maximum value within each cell, introducing localization errors. While tolerable for object 

detection tasks focused on bounding boxes, these errors are detrimental to segmentation, which 

requires pixel-level accuracy. To address this, the ROI Align layer divides each grid cell into four 

quadrants and samples a point within each quadrant. The value at each sampled point is then 

calculated using bilinear interpolation through the four nearest neighboring feature map points. 

This method significantly reduces information loss and error compared to traditional pooling, 

leading to a measurable improvement in segmentation accuracy (He et al. 2017).  

Lastly, the outputs of the Mask R-CNN models are provided through 3 distinct heads 

(Figure 3), namely the classification head, the localization head, and the mask head. While 

geometrically representing the shape of heads, they are actually fully connected neural network 

layers which provide the outputs in the requested format. By comparison, while convolutional 

layers use filters and process localized regions of the input data to generate output, the operation 

within the fully connected layers are carried out through matrix multiplication. Additionally, 

fully connected layers frequently incorporate a non-linear activation function, like the Rectified 

Linear Unit (ReLU), to introduce non-linearities essential for modeling complex relationships in 

the data. While the output class and the object bounding boxes appear to be designed for the 

output mask, the computations internally happen the opposite way. Masks are generated for each 

of the object classes, and detections with a score higher than a threshold are reported as the 

output. This is done after the non-maximum suppression process, which eliminates detections 

that overlap by more than a certain percentage.   
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Figure 3: Mask R-CNN architecture (reference: Sky Engine AI Developer Blog - 

https://www.skyengine.ai/blog/what-is-mask-r-cnn.)   

The Mask R-CNN model, despite its robust detection capabilities, is computationally 

intensive and requires the use of a Graphics Processing Unit (GPU) during inference. 

Furthermore, due to its specific structure, there are challenges in packaging it into formats 

compatible with edge devices’ operating systems, such as the Raspberry Pi OS, as well as 

smartphone operating systems like Android and iOS. To make our model practical for real-world 

applications, in our case the stormwater flow monitoring, two options are available. First, the 

model could be deployed over a cloud service like Google Vertex, where scalability is assured, 

and access to computational resources is not a concern. In this scenario, cameras are responsible 

only for capturing images and videos, and transmitting them to the servers. The advantage of 

opting for this option is that the system allows for the use of more powerful models, given the 

available computational support. It also features a simpler design, making the detection of 

glitches and bottlenecks easier, and is capable of continuous training and improvement of the 

model, for example, through continuous integration and continuous delivery (CI/CD) pipelines, 

which are typical in industrial settings leveraging AI at scale (Garg et al. 2021; Garg and Garg 

2019). Lastly, safety concerns with this option are minimized, given the centralized design of the 

computational facilities, which allows for enhanced physical safety measures. Additionally, 

proprietary connections with the desired level of security can be selected. However, such a 

design becomes expensive when deployed over third-party facilities. Moreover, domesticating 
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the facilities requires investments and technical knowledge, which may not be available to water 

and agricultural engineers.  

Another option is to use a lighter model with a similar structure and functionality, which 

could be deployed individually on the cameras. In this scenario, aside from the typical task of 

capturing images and videos, the cameras would also be equipped with processing units capable 

of extracting the water level at the stormwater outlet and transmitting only those values. Using 

this system has the benefit of saving on communication costs compared to the previous approach 

and doesn’t require an initial investment and high technical expertise. However, with this system, 

the training and improvement of the models become significantly harder, as the system is not 

designed for that purpose. Updating cameras with new models is significantly more time-

consuming, and the cameras should be treated individually unless a remote updating system is 

specifically designed, which demands a high level of technical proficiency and can be impeding 

for the corresponding staff. Lastly, to the best of our knowledge, cameras with such capabilities, 

which could operate in the field, are not widely available in the market. Therefore, in the case of 

their widespread deployment, there needs to be an investment for the mass production of these 

types of cameras. There is a market for these, however, and there is little doubt that these smart 

cameras will eventually be available.  

2.1.2 YOLOv8: a lightweight deep learning alternative  

To accommodate the second option, an instance segmentation model based on the 

YOLOv8 structure was trained (Jocher et al. 2023). The YOLO architecture, with its fully 

convolutional integral design, offers the advantage of being faster. In the Mask R-CNN 

architecture, a 4-step alternate training approach serves as a speed bottleneck. From a 

macroscopic point of view, the issue with the alternate training approach is that it requires going 

back and forth between components during training, thereby elongating the training process. In 

contrast, the fully convolutional design of the YOLO structure allows for updating all parameters 

through a single pass of the gradient signal. Moreover, the lack of design optimization in the 

Mask R-CNN feature extractors presents a potential speed impediment. Since these extractors 

were not originally designed for object detection and segmentation, they may slow down the 

model’s application. Another benefit of utilizing the YOLOv8 structure is that the trained model 

can be easily converted into formats like TFLite and CoreML (Apple Inc. 2021), which are 
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readable by typical smartphones as well as edge devices. Consequently, the design of cameras 

becomes easier, and it becomes feasible for the entire process to be implemented through a 

smartphone application. This enables staff and individuals to carry the model in their pocket and 

use it with just a few button presses.  

2.2 Model Evaluations  

After training, the models were evaluated on a test dataset containing images from a site 

located at NC State University Centennial Campus (image not shown).  

Table 1: Average precision for models’ mask detections. AP: number of positive (correct) 

detections divided by the total number of detections 

 Intersection Over Union (IOU) Average Precision (AP) 

Mask R-CNN 0.50 : 0.95 0.841 

YOLOv8 0.50 : 0.95 0.901 

 

In Table 1 above, IOU is a metric used to quantify the overlap between the model 

detections and the ground truth. It is also computed through the following relationship:  

𝐼𝑂𝑈 =
𝐴𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑢𝑛𝑖𝑜𝑛

(1) 

The average precision (AP) is a standard metric for object detection and segmentation 

tasks an is defined as the number of positive (correct) detections divided by the total number of 

detections. As a result, AP values are indicators of how accurate model detections are. 

In equation 1 above, Aintersection refers to the area of intersection between the model’s 

detection and the ground truth. Likewise, Aunion denotes the union of the model’s detection and 

ground truth region. The Precision and Recall are also typical metrics with object detection 

models, and they were first introduced by the COCO object detection challenge (Lin et al. 2014). 

To compute these two metrics, the following relationships are employed:  

 Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃

 Recall (Sensitivity) =
𝑇𝑃

𝑇𝑃+𝐹𝑁

(2)  
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In equations 2, TP denotes true positive detections, FN represents false negative 

detections, and FP stands for false positive detections. It is important to note that true positives 

correspond to cases where the model’s detections were correct for the desired object. In our 

application, true positive cases are model detections with an IOU higher than a threshold. 

Conversely, false positives indicate cases where the model made a detection, but the ground truth 

data indicates no object at that location. An example of a false positive detection in this study is 

the identification of the culvert’s reflection in the ponded water in front of the culvert rather than 

the actual object (Figure 4). These false positives generate outliers our system automatically 

detected and flagged as unreliable. Finally, false negatives are cases where the model didn’t 

make any detection, and the ground truth data confirms that choice. For this study, this refers to 

cases where there is no outlet in the image and the models make no detection. Here, the term 

"ground truth" refers to the annotations provided to the models, which in our application is either 

the empty outlet or the unoccupied area of an outlet with flow. Therefore, the recall denominator 

encompasses all correct cases, while the precision denominator aggregates the entirety of 

detections. Also, given the explanations, the average precision is computed by taking the mean of 

precision values at different recall levels, i.e., the area under the precision-recall curve.  

2.2.1 Coordinate Transformation  

Since image and video measurements exist in pixel coordinates, a geometrical method is 

needed to convert them to a real-world coordinate system. Projective geometry governs the 

relationship between real-world objects and their image representations. Specifically, the 

homography transformation allows us to move between real-world and image coordinates 

(Hartley and Zisserman 2004). To apply this transformation, the first step is to embed a reference 

object with known dimensions in the same plane as the object we want to measure. In this study, 

we used a 4×4 chessboard pattern as the reference object and its 9 inner corner points as known 

reference coordinates (Figure 5). 
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Figure 4: An example of a false positive detection: the Mask R-CNN model identifies both a 

culvert and its reflection in a pond. 

 
Figure 5: Calibration setup with reference object (chessboard pattern) embedded and aligned 

with the stormwater outlet 
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Projective geometry extends Euclidean geometry, partially by providing a mathematical 

definition of infinity. It accomplishes this by adding an extra coordinate to each point. In two 

dimensions, Euclidean points reside on a plane within the projective space where the third 

coordinate equals 1. Therefore, to convert from projective coordinates (also referred to as 

homogeneous coordinates) to Euclidean coordinates, we divide the first two coordinates 73 of 

the projective representation by the third coordinate (assuming the third coordinate is non-zero 

and the points do not reside at infinity). This projects points from the general projective space 

onto the Euclidean plane. Consequently, the notation for the 2D Euclidean points in the project 

space is as (x, y, 1) (Hartley and Zisserman 2004).  

Given these explanations, the next step in converting image coordinates to real-world 

coordinates involves expressing them in projective (homogeneous) format. This is essential 

because the homography matrix is computed under the assumption that points are represented in 

this way. Once the points are in projective coordinates, the following relationship holds between 

world coordinates and image coordinates3:  

(
𝑢
𝑣
1

) = 𝐻 (

𝑋
𝑌
𝑍
1

) (3) 

Here, u and v represent image coordinates, and X, Y, and Z denote real-world 

coordinates. The matrix H is also the homography matrix and is computed as follows:  

𝐻 = 𝐴[𝑟1𝑟2𝑟3 ∣ 𝑡] (4) 

Where A represents the camera’s intrinsic matrix, including its focal length and optical 

center, and the second matrix is the extrinsic matrix with columns representing rotations with 

respect to the X, Y, and Z axes, as well as translation relative to the world-coordinate origin. The 

camera’s intrinsic matrix also has the following representation.  

𝐴 = (

𝛼 𝛾 𝑢0

0 𝛽 𝑣0

0 0 1
) (5) 

 
3 This is a projective geometry representation. In projective geometry coordinates are defined up to a scale 

a 1 is arbitrarily set. This can be replaced by any other value, as long as both sides of the equation are consistent 
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In matrix A, (u0, v0) is the coordinate of the principal point, α and β are the scale factors 

along the u and v axes, and γ the parameter representing the skew of the image axes (Zhang 

2004).  

 

Figure 6: An illustration of the camera’s pinhole model used in this study (Zhang 2004; Tomasi 

2017) 

Since our measurements are in the image coordinate system, based on equation (3), the 

corresponding real-world measurements can be obtained by multiplying the inverse of the 

homography matrix with the image measurements.  

2.3 Ellipse Fitting of an empty outlet  

Since the model outputs a binary image for the object mask, drawing the contour involves 

calculating the gradients over the binary image and applying a threshold to isolate non-zero 

values. To fit an ellipse to the contour points, several approaches can be considered, depending 

on the characteristics of the contour points. In this study, since the contour points closely align 

with the shape of an ellipse, a least-squares solution like the LIN algorithm (in Fitzgibbon and 

Fisher 1995), which minimizes the algebraic distance between the points and the fitted ellipse, or 
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the direct least-squares ellipse fitting method, should provide a good approximation of the shape 

(Fitzgibbon and Fisher 1995; Fitzgibbon et al. 1999).  

Given that the fitted ellipse to the outlet mask determines the location of the center, the 

lengths of the axes, and the orientation of the ellipse in the image coordinate system, we can 

compute the coordinates for a representative number of points on the ellipse based on its 

parametric representation. The parametric representation of an ellipse centered at (0, 0) is given 

by:  

𝑥 = 𝑎 × cos 𝑡
𝑦 = 𝑏 × sin 𝑡

(6) 

 

where the variables a and b are respectively the semi-major and the semi-minor axes, and 

the variable t ranges from zero to 2π. In Euclidean 2D space, rotation is a linear transformation 

and can be applied through the following matrix multiplication:  

(
𝑥′

𝑦′
) = (

cos 𝜃 −si𝑛 𝜃
sin 𝜃 cos 𝜃

) (
𝑥

𝑦
) (7) 

Assuming the ellipse orientation equal to θ, the parametric form of the ellipse will 

become: 

𝑥′ = 𝑥cos 𝜃 − 𝑦sin 𝜃 = 𝑎cos 𝑡cos 𝜃 − 𝑏sin 𝑡sin 𝜃

𝑦′ = 𝑥sin 𝜃 + 𝑦cos 𝜃 = 𝑎cos 𝑡sin 𝜃 + 𝑏sin 𝑡cos 𝜃
(8) 

Finally, assuming the center of the ellipse is at (x0, y0), the parametric representation of 

the ellipse becomes:  

𝑥 = 𝑥0 + 𝑎cos 𝑡cos 𝜃 − 𝑏sin 𝑡sin 𝜃
𝑦 = 𝑦0 + 𝑎cos 𝑡sin 𝜃 + 𝑏sin 𝑡cos 𝜃

(9) 

To generate points on the ellipse, we should divide the range of the variable t into the 

desired number of segments and plug them into equation (9). The generated points can then be 

mapped to their real-world coordinates using the inverse homography transformation. Having the 

ellipse points in their real-world coordinates, the height is calculated as the absolute difference 

between the maximum and minimum y-coordinates of the points.  
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To establish and compare the models’ precision and performance under varying field 

lighting conditions, as well as to assess their robustness in detecting the outlet’s shape, the 

models were compared in terms of their measurements for the major and minor axes. For this 

test, images spanning a full day were taken every 15 minutes. Each model was run on each 

image to obtain the object mask. Using the mask coordinates, a binary image was created. 

Gradients were then computed and thresholded to obtain the mask’s contour. Next, an ellipse was 

fitted to the contour using a least-squares method, yielding ellipse parameters including its 

center, major and minor axes, and orientation. Next, the endpoints of the axes were identified in 

the image. After applying the homography transformation to these endpoints, their real-world 

distance was computed using the Euclidean norm (second norm) of the difference between 

corresponding points.   

2.4 Models’ water stage measurement comparison in the field 

2.4.1 Cameras used and field sites 

To train and evaluate the models’ performance images from three different sites, a lab 

prototype, and Google Images licensed under Creative Commons (CC) were used. Two brands of 

game cameras were deployed in the field: the RECONYX HyperFire 2 Professional Covert IR 

Camera and Blazevideo A252 Trail Camera. The RECONYX camera has a resolution of 

2048×1440 and uses an IR sensor and IR illumination to provide high-quality night images. The 

Blazevideo camera has a resolution of 3840×2160 and uses a color night vision sensor. Due to 

field constraints, the distances and angles between the camera and outlet varied for each camera. 

For the images used, the distance between the camera and the center of the outlet was 

approximately 6 meters, with a downward vertical angle of approximately 20 degrees from the 

horizontal.  

2.4.2 Performance assessment of the system: measuring outlet diameter in 

the field 

We used these images in our models to estimate the dimensions of a culvert outlet using 

images of an empty outlet, which appears as an ellipse on images. We estimated the dimensions 

of its major and minor axes, from a series of images captured over the period of a day. The axes’ 

lengths gave two largely independent measurements of the same distances, i.e., the culvert 
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diameter. We then compared these estimates to actual measurements taken in the field to assess 

the model’s accuracy and performance. The time series nature of the image data allows us to 

assess the model’s performance in two key areas: its adaptability to varying lighting conditions 

across the day and its robustness in maintaining consistent measurements over time. Practically, 

for the culvert diameter assessment and water level (below) we report the performance for the 

‘Softball site’ illustrated in Figure 1a. 

2.4.3 Performance assessment of the system: measuring water depth 

To assess the performance of the model, an initial attempt was made to use measurements 

from a flowmeter (Sontek IQ) mounted inside the culvert. However, this method did not yield 

robust results likely due to several reasons. One, stormwater in our culvert appeared to have a 

liquid and a gaseous phase because of the turbulence. The Ultrasonic Doppler method used by 

the Sontek-IQ requires aqueous phase only. Two, because of the turbulence, the stage and 

velocity could vary by several cm within seconds. The instrument takes measurements every 

second and averages them over a minimum of 30 seconds. Measurements taken every video 

frame and averages over 30 seconds are just not directly comparable. Three, the flowmeter’s 

mechanism required a certain water level to start recording values, a condition not met in many 

cases considered in this study. In summary, due to highly variable and turbulent conditions, 

flowmeter readings proved inconsistent and were deemed unsuitable as reference measurements. 

Using a staff gauge, typically employed in stream water level monitoring, was also impractical 

due to the area’s dimensional constraints and the turbulent condition of the water in the culvert. 

Therefore, the only viable option was to visually verify the water level in each image frame. To 

facilitate this, and assuming the coplanarity of the reference object and the outlet, a series of 

horizontal perspective lines were drawn as a guide to help the observer make an educated and 

potentially accurate judgment. Two people read the same images and the reference values were 

taken as the average. 

To draw the perspective lines around the object mask, we first need to map the mask 

points to their real-world coordinates and extract the range of values in each direction. Allowing 

for a leeway around the mask edges, the horizontal perspective lines span between the maximum 

and minimum x-coordinates in the real-world system. By converting both ends of the lines from 

the real-world coordinate system to the image coordinate system using the inverse of the 
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homography transformation, the lines are obtained and could then be drawn on the image. Each 

yellow line was 2 cm appart from the next, and every fifth line was marked with a red color for 

better differentiation. Our assessment was that our readings were done within a 1 cm.  

Additionally, to aid in the visual reading of the water level, the levels corresponding to the 

midpoint and the top point of the mask were highlighted with bluelines. A view of the outcome 

of these processes is shown in Figure 7.  

 
Figure 7: Horizontal perspective lines over the unoccupied area facilitating visual observation 

 

In the processing pipeline, each frame is treated independently to avoid the resonance 

effect of errors across different frames. Accordingly, the homography transformation, as well as 

the mapping between the image coordinate system and the real-world coordinate system, is 

performed for each frame for both the object mask and the culvert’s fitted ellipse. 

For hydrologists, visual readings might appear at first to be less objective than more 

traditional sensing that involve pressure transducers or bubblers. However, in these extremely 

turbulent conditions, none of the traditional methods can be applied, as no stilling well can be 

installed in these conditions, nor any stream gauge. Although the 1 cm uncertainty might sound 

large, it probably is the best that can be achieved in these conditions. 
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2.5 System’s metrology in the lab 

The models’ performance assessment from the field do not fully reveal all the models’ 

limitations. In practice, field conditions offer limited flexibility in camera placement due to 

obstructions such as streams or vegetation. Additionally, man-made structures can further restrict 

suitable mounting locations. Therefore, it is essential to determine more systematically the 

models’ limitations beforehand to assess their suitability for various field conditions. 

Furthermore, the previous tests relied on a single perspective and thus cannot be used to study 

the effects of different camera settings, including lens distortion. 

To address these situations, a lab setup was developed. A prototype culvert was built and 

placed on a desk with chair legs for easier mobility. The camera was mounted on a pole attached 

to a rail above the setup, allowing for easy adjustment of the distance between the camera and 

the culvert. Figure 8 shows a view of the lab setup. The camera used for these tests was a 

Blazevideo A252 Trail Camera described above. Notably, the culvert was not perfectly circular, 

and its actual diameter varied between 34.0 and 34.85 cm. 
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Figure 8: Laboratory setup for metrology testing: (a) prototype culvert with adjustable legs for 

mobility; (b) camera mounted on a pole attached to a rail above the setup. Arrows along the rail 

indicate the direction of camera movement to achieve different distances. Arrows on the pole 

indicate the direction of camera movement to obtain different vertical angles; (c) culvert 

positions marked on the floor, with numbers indicating wheel locations for each position and the 

arrow representing the direction of movement 

During the tests, given the dimensions of both the culvert prototype and the chessboard 

pattern (used to establish the homography transformation between image and real-world 

coordinates), as well as the camera’s depth of field, distances varied from 4.75 m to 11.25 m in 

25 cm increments. Additionally, while maintaining the camera’s perspective, it was moved 

vertically in 5.2 cm intervals, equal to the distance between the pole holes, starting at 141 cm 

from the floor, to capture different vertical angles. The culvert prototype was also moved 

between three locations along the direction perpendicular to the camera’s rail, with the second 
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position being 30 cm away from the first, and the third position being another 19 cm further (49 

cm total from the first position), to simulate varying horizontal angles. The non-uniform choice 

of distances for culvert movement was constrained by the lab environment. This entire process 

was repeated both with the lab lights on and off, using the camera’s flash in the latter case, to 

assess the combined effects of lighting conditions and other factors. As a result, 648 images were 

recorded for each lighting condition, totaling 1296 images. 

3 Results  

3.1 System’s performance in the field: results on culvert diameters 

The results obtained from the models’ measurements are illustrated in Figure 9, with 

results expressed in pixel coordinates on the top row (Figure 9a and Figure 9b) and in real-world 

coordinates in the bottom row (Figure 9c and Figure 9d). Based on the results, one can see that 

both models were relatively consistent with their measurements throughout the day. However, 

while both models recorded similar overall performance for the minor axes, as reflected in the 

values recorded in both image and real-world coordinate systems, the difference between the 

models is greater for the major axis. The recorded values for each model exhibit greater 

dispersion, resulting in a wider range of real-world measurement changes, as demonstrated in 

Figure 9c.  

Based on the distribution of points around the actual measurement, no significant 

difference is observed between the models for the real-world measurements of the minor axis. 

For the major axis, the YOLOv8 model’s data points are slightly more concentrated around the 

actual value than those of the Mask R-CNN model, suggesting marginally better performance in 

extracting the outlet’s shape. To further establish the overall quality of measurements for each 

model, their mean relative errors for the axes were also computed. The Mask R-CNN model’s 

mean relative error for the major axis is 0.015, while the YOLOv8 model’s is 0.01. This further 

demonstrates the YOLOv8 model’s marginally better performance in estimating the actual value 

of the major axis. For the minor axis, the mean relative error is 0.009 for the Mask R-CNN 

model and 0.008 for the YOLOv8 model, demonstrating marginally better performance from the 

YOLOv8 model compared to the Mask R-CNN model.  
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Additionally, closer examination of the plots reveals a slight change in measurement 

patterns between daytime and nighttime for both models. This change is more easily observed in 

Figure 9a and Figure 9b. To quantify this change in behavior, the mean relative error between 

daytime and nighttime was computed, as documented in Table 2. Based on the values in Table 2, 

the Mask R-CNN model’s performance in measuring the major axis was slightly worse at night 

than during the day. However, the change in mean relative error between day and night for the 

YOLOv8 model is negligible. For the minor axis, both models demonstrated better precision at 

night than during the day. This could be due to the pattern of camera lighting on the outlet during 

nighttime image capture, potentially creating better contrast for capturing the edges around the 

minor axis region of the fitted ellipse compared to the major axis. 

 

 

A 

 

B 
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C 

 

D 

 

 

Figure 9: Comparison of major and minor axis lengths in image coordinates (respectively A 

and B) and real-world units (respectively C and D). Red points represent Mask R-CNN model 

results, blue points represent YOLOv8 model results. 

 

Table 2: Mean relative error for major and minor axes measurements during daytime and 

nighttime. Values in red correspond to the Mask R-CNN model, and values in blue correspond to 

the YOLOv8 model. 

 Major Axis Minor Axis 

Day 0.011 

0.011 

0.012 

0.01 

Night 0.018 

0.01 

0.006 

0.007 

 

Figure 10 illustrates the error range for the Mask R-CNN and the YOLOv8 models. 

Based on the plots, one can see that the error range for the major axis measurement is wider than 

that for the minor axis, which was also demonstrated in Figure 9. However, for both axes, the 
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majority of the measurements have an absolute error close to or of less than one cm. The models 

were also evaluated and compared in terms of their computational time. Both models processed a 

100-frame video, and the inference time for each frame was recorded. The resulting boxplot 

(Figure 11) illustrates the distribution of inference times. Figure 11 shows that the Mask R-CNN 

model computational time is significantly slower than the YOLOv8 model, by more than an 

order of magnitude (the mean inference time of the Mask R-CNN model is 1.24 seconds per 

frame, while this value is marginally less than 0.11 seconds per frame for the YOLOv8 model). 

While YOLOv8’s efficient structure contributes to this speed difference, additional memory 

optimizations also likely play a significant role in its faster operation. Therefore, the observed 

difference shouldn’t be solely attributed to YOLO’s structural superiority. 

A 

 

B 
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Figure 10: Models error range for the major and minor axes measurements. Mask R-CNN: 

respectively, A and B. YOLOv8: respectively, C and D  

 
Figure 11: Inference time comparison between the YOLOv8 and the Mask R-CNN 
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These results were obtained using an NVIDIA T4 GPU with 16 gigabytes of dedicated 

memory. Nevertheless, many edge devices lack such capabilities, leading to significantly higher 

run times compared to the reported times above. This is where the YOLOv8 model shines, as its 

inference time remains within a feasible range even on edge devices with low computational 

resources, making it suitable for deployment on such devices.  

3.2 System’s performance in the field: results on water levels 

As illustrated in Figure 12, while the models generally track each other, the YOLOv8 

model tends to underestimate the water level, when the Mask R-CNN model tends to 

overestimate it, compared to the visual readings. These readings were performed according to the 

method described above, i.e., using the added perspective lines on each video frame picture. The 

estimated visual reading uncertainty was evaluated to be 1 cm. This pattern is also observable 

in Figure 13, which compares the models’ error range in capturing the water level with respect to 

the visual reading. Additionally, in comparison to Figure 10, the interquartile range for YOLOv8 

is shifted downward, while the error interquartile range for the Mask R-CNN model is shifted 

upward (Figure 13), indicating that complex conditions affected both models’ measurements. 

This effect on the Mask R-CNN model is also demonstrated in Figure 12. However, given the 

shorter models error range for the Mask R-CNN model, it can be inferred that the Mask R-CNN 

model is more reliable and consistent in its measurement than the YOLOv8 model. 
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Figure 12: Comparison of the Mask R-CNN and YOLOv8 models with visual measurements for 

water stage estimation at the stormwater outlet. 
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Figure 13: Comparison of the models’ error ranges relative to visually measured water stages 

As illustrated by Figure 14, a considerable number of stormflow events occur under 

turbulent conditions due to the slope and design of the conduits, as well as the volume of water 

typically channeled into the system during precipitation events.   

 

 
Figure 14: The YOLOv8 model detected the unoccupied area of the culvert (left) compared to 

the Mask R-CNN model (right) 

Consequently, developing a model capable of tracking water levels with fine detail and 

high precision is challenging. This difficulty is further compounded by the fact that most 
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stormflow events occur during dim weather conditions, affecting the resolution and visibility of 

the water level.  

A difference and underestimation of a centimeter on average by the parsimonious 

YOLOv8 model is not ideal, as calculated flows would be systematically underestimated in the 

conditions illustrated. One of the advantages of using deep learning methods with images and 

videos in these conditions, is the ability of this method to capture variability that no other more 

traditional methods would capture, namely the extreme variability of stage over a few seconds at 

a given point in time. The deep learning methods can also handle the surface of the water when it 

is not horizontal by any mean, and can vary by 5 cm or more vertically in the culvert. This 

variability in time and in space (confirmed visually, data not shown) does not reflect actual flow 

variations, which are expected to be more stable. Instead, it reflects the extreme turbulence 

resulting from breaks in the connections between consecutive culvert sections (verified in this 

case study).  

The effect of the YOLOv8’s mask ‘bleeding’ (Figure 14), would likely be less severe with 

less turbulent flow and a more horizontal water level, as observed in other cases monitored for 

this study (data not shown). The penalty on precision resulting in a gross underestimation of 

water stage illustrated here, is thus somewhat contingent upon the case study.  

3.3 Metrology of the system in the lab  

To establish a baseline for comparison between field and lab results, the mean real-world 

size represented by each pixel within the outlet image is used as a reference metric and reported 

for different scenarios. The following bar plot illustrates the mean real-world size per pixel for 

various distances between the camera and the outlet, as determined from the lab experiments.  
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Figure 15: Mean resolution of the culvert’s representation at various distances 

Four factors were tested in these experiments: the object pixel resolution tested by 

distance of the camera to the culvert, the lighting conditions, i.e., light vs. dark conditions, the 

horizontal angle of the camera away from the culvert axis, and the model chosen, i.e., Mask R-

CNN vs. Yolov8. The details of all these experiment results can be found in Nooshzadi (2024). A 

summary is provided here.  

3.3.1 Detection of culvert and accurate measurements stop when camera is 

too far 

When the camera was placed beyond a certain distance, both models started to make 

some erroneous detection of the culvert. Generally, the threshold distance was shorter for the 

Yolov8 model compared to the Mask R-CNN, and for night images compared to images taken 

during daylight (Figure 16). Detection of the culvert generally drastically lowered after 7.5 m 

away from the culvert in the lab, or for resolution lower than 0.23/px. 
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B

 

C

 

D

 

Figure 16: Detection of the culvert in the lab as a function of the distance for the Mask R-CNN 

(A and B) and the YOLOv8 model (C and D), for images during daylight (A and C) and night 

images (B and D) 
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3.3.2 Relative measurement error on diameter increased with image 

distortion, distance, YOLOv8 model and dark images 

The main results are summarized in Figure 17 below. Additional results can be found in 

Nooshzadi (2024). The errors were calculated from the difference between the reference 

diameter that was measured with a tape measure (1.5 mm) and the calculated diameters using 

our models. 
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Figure 17: Error on estimations of the culvert diameter via the size of the major axis of the 

ellipse appearing on images taken in the lab as a function of the distance of the camera to the 

culvert. Top row: Mask R-CNN model; Bottom row: YOLOv8 model; Left column: daylight 

images; Right column: dark images 

The camera used in the lab tended to distort the images more than that in the field. This 

tended to give poorer results than those expected and observed in the field, and gave poorer 

results when the angle between the culvert axis and the camera was large (results not shown in 

this report). 

Lab results show that the Mask R-CNN model tended to work better and more 

consistently for daylight and night images, with errors within ±1 cm for distances below 7 m, of 

about 0.25 cm/px. Accuracy largely decreased at night. For the YOLOv8 model, when the culvert 

was properly detected, the errors were rather acceptable for daylight images (less than 6.5 m), 

but the errors largely increased suddenly as the ellipse fitting algorithm started largely 

overestimating ellipse sizes. This was particularly true for night images (Figure 18).  

 
Figure 18: Representative samples from the YOLOv8 model detections for dark images: (a) Edge 

detection bleeding (distance: 5.25 meters). (b) Model detected the outer edge instead of the inner 

edge (distance: 7 meters). 

As a result of the analyses conducted in the lab, the Mask R-CNN model was generally 

found to be more capable of detecting the culvert under challenging conditions than the YOLOv8 
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model (Figure 17). For light images, while the Mask R-CNN model detections maintained an 

error range of ±1 cm up to 8 meters (equivalent to an outlet pixel resolution of 0.2 cm/px), the 

YOLOv8 model’s detections remained within this practical error range only up to 6.5 meters, 

corresponding to an outlet pixel resolution of 0.15 cm/px. In terms of model capacity, the Mask 

R-CNN model consistently detected the outlet up to 8.5 meters (0.23 cm/px resolution). The 

YOLOv8 model’s detections were consistent up to 7.5 meters (0.19 cm/px resolution), after 

which the number of detections decreased. For dark images (data not shown), although the 

number of detections increased for both models, the detections were less accurate than for light 

images. The practical distance for the Mask R-CNN model, within which the error range for 

measurements remains within ±1 cm, decreased to 5.5 meters (corresponding to a 0.1 cm/px 

resolution) under dark conditions.  

For the YOLOv8 model, the practical distance decreased to 5 meters (corresponding to a 

0.08 cm/px resolution). However, the YOLOv8 model exhibited significantly more errors than 

the Mask R-CNN model in dark images, indicating its greater sensitivity to low-light conditions. 

An overview of the models’ practical limits for dark and light conditions is provided in Table 3. 

Table 3: Practical distance limits and corresponding object pixel resolutions for both models 

under light and dark conditions, based on lab tests 

 Light Dark 

Mask R-CNN 

 

8m 

0.2 cm/px 

5.5m 

0.1 cm/px 

YOLOv8 

 

6.5m 

0.15 cm/px 

5m 

0.08 cm/px 

 

Additionally, based on the error range plots for the major and minor axes, as well as the 

discussion of the camera’s pincushion distortion, the impact of distortion on image 

measurements, especially magnified for near images, was found to contribute noticeably to 

model measurement errors. Therefore, based on the results, it is recommended that for field 

operations, the camera be positioned so that the outlet is located in the center of the image. 

Additionally, it is also advisable to try to keep the reference object (in this study, a chessboard) as 

close to the outlet as possible, as this will help to locate the reference object near the center of the 

image as well, thereby minimizing distortion effects on measurements. Furthermore, having the 
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reference object close to the culvert makes it easier to align it with the culvert face, avoiding 

errors caused by non-coplanarity. 

To further enforce this idea, as discussed in Tomasi (2017), an inexpensive option is to 

mount onto the lens of a camera, an additional lens designed for a larger sensor. This will 

effectively crop the field of view to the central portion, where distortion is minimal. Another 

option to improve the model’s performance is to register images with a camera with a longer 

focal length. As can be easily inferred from the simple pinhole camera model, this would lead to 

an enlargement of the object’s representation in the image, thereby allowing the model to capture 

the outlet shape and details more accurately. Additionally, as discussed in Andrew Rolands 

(2020), the camera’s angular field of view (AFOV) can be computed as: 

𝛼 = 2 tan−1 (
𝑑

2𝑏𝑓
) (10) 

In equation (10), d represents the sensor diagonal, f represents the focal length, and α 

represents the angular field of view. The parameter b is the bellows factor, typically used to 

compensate for exposure in cameras with adjustable focus. However, given that the trail cameras 

used in this study have a fixed focus and do not include a bellows, it is safe to assume that this 

parameter equals 1. Based on the formula, increasing the focal length leads to a decrease in the 

field of view, which could necessitate placing the objects closer to the center of the image, 

thereby minimizing lens distortion effects.  

Nevertheless, the results from the lab analyses cannot be fully applicable to field 

conditions for the following reasons. First, given the project’s goal of measuring water levels at 

the mouth of stormwater culverts in the field, the training process for both models primarily 

focused on this objective. A majority of the images used for training were chosen from field 

images captured under various conditions. Only a limited number of images of the culvert 

prototype, taken outside the lab, were included to compensate for the limited variation in camera 

angles relative to the culvert in the field dataset. Therefore, it is not surprising that the models 

perform better in the field than in the lab.  

Second, as can be observed in Figure 18 (captured in the lab), the lighting pattern over 

the culvert and the material used for building the prototype culvert differ from those at the field 

site. In the field, except for instances where external objects like vegetation or animals obstruct 
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the camera’s view, the camera view is unobstructed, and the lighting covers the outlet relatively 

uniformly. In contrast, in the lab, the lighting from the camera is not as diffuse, and reflections 

from objects present in the lab are common. As a result, the uniform lighting conditions typical 

of the field are difficult to replicate in the lab. Additionally, the material used for building 

culverts in the field is typically concrete, which is too heavy for a prototype. The lighter weight 

material used for the culvert prototype was more light-absorbent, making it appear darker than a 

real culvert in the field. 

Nonetheless, this does not imply that the lab tests were not useful. They provided 

valuable insights into the models’ capacity and performance under challenging conditions. 

However, a deeper analysis like saliency map analysis using a method such as Grad-CAM 

(Selvaraju et al. 2020) could offer deeper insights into the models’ specific behaviors and 

potential solutions for enhancing their performance. 

4 Findings and Conclusion  

To overcome the limitations of traditional image processing methods, we developed a 

hybrid method of using deep learning models and a geometrical method. The deep learning 

models layered complex architectures that are better suited to handle the complexities of field 

conditions to detect culvert with and without water. The geometrical method  extracted 

characteristics of ellipses as culverts appear on images and and used homography transformation 

to express all results in real-world coordinates. 

In this study, two instance segmentation models based on the Mask R-CNN and YOLOv8 

architectures were developed to segment the visible portion of the outlet’s face. This allows for 

the detection of the entire outlet (defined by its inner edges) under no-flow conditions and only 

the unoccupied area during flow conditions, enabling the calculation of the water level at the 

outlet by subtracting these two segmented areas. 

Upon evaluating the models at a sample field site, as shown in Table 2 and Figure 13, one 

can confidently say that they provided, as a first attempt, an innovative, robust, relatively reliable 

(≈ ± 1 cm for appropriate image resolution) and promising method to measure water stage in 

stormwater outlets. In extremely turbulent flow where the water level can change by more than 
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10 cm in seconds, the models were able to capture the variations in the field at an uncertainty 

estimated at ≈ ± 2 cm. We are not aware of other techniques able to perform at that level in these 

conditions. 

In the field, the models’ performance was largely comparable, with the YOLOv8 model 

showing marginally better results. When the models were used to measure the culvert’s 

dimensions using images taken every 15 minutes throughout a full day, the majority of 

measurements for the Mask R-CNN model fell within a ±1.5 cm error range, while the YOLOv8 

model maintained a tighter ±1 cm range. During a 5-second video turbulent outflow event, the 

models recorded values very comparable with human visual measurements aided by perspective 

lines drawn over the culvert’s unoccupied area. The Mask R-CNN model consistently 

overestimated the water level by up to 2 cm for most measurements, while the YOLOv8 model 

consistently underestimated the water level by up to 2 cm. 

The metrology performed in the lab designed to assess the impact of image resolution, 

day vs. night images, and image distortion showed that under well-lit conditions, the practical 

distance at which the majority of measurements had an error range within ±1 cm was found to be 

8 meters for the Mask R-CNN model (corresponding to an object pixel resolution of 0.2 cm/px) 

and 6.5 meters for the YOLOv8 model (corresponding to an object pixel resolution of 0.15 

cm/px). However, under dark conditions, the practical distance for the Mask R-CNN and 

YOLOv8 models was reduced to 5.5 meters (0.1 cm/px) and 5 meters (0.08 cm/px), respectively. 

The YOLOv8 model also showed greater susceptibility to errors caused by the lighting pattern 

from the camera over the outlet edges.  

5 Recommendations 

The models developed in this study should be considered as proof-of-concept and require 

further development to be field-ready. As a follow-up to this project, analyzing saliency maps for 

the models using methods like Gradient-Weighted Class Activation Mapping (Grad-CAM) 

(Selvaraju et al. 2020) could provide deeper insights into their specific behaviors. Based on these 

insights, the models could be retrained or fine-tuned with additional data to enhance their 

performance and achieve better results. Another potential avenue for improvement could be 

exploring more recent, attention-based architectures like Mask2Former (Cheng et al. 2021) 
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which have demonstrated superior performance in segmentation benchmarks like COCO (Lin et 

al. 2014) compared to state-of-the-art models like the Mask R-CNN model used in this study. 

However, it is important to note that attention-based models are typically not optimized for 

inference speed and are often heavier and slower than convolutional neural networks like those 

used in this study. 

Lastly, the models developed in this study are inherently image-based. Even when 

applied to videos, they treat them as discrete sets of frames rather than leveraging the spatial and 

temporal dependencies between frames. A simple solution to this limitation could be to use the 

Kalman filter method (Kalman 1960) to track distinguishable features across frames, thereby 

improving consistency between detections. Another, more comprehensive option would be to 

utilize video instance segmentation (VIS) models, which are specifically designed to track 

detections and maintain consistent features across frames. Several models have been introduced 

in this area. For example, the MaskTrack R-CNN model is built upon the Mask R-CNN model 

used in this study and incorporates a tracking branch to establish associations across frames 

(Yang et al. 2019). Among attention-based models, as of the time of this writing, the DVIS++ 

model is the top performer in terms of the average precision criterion (Zhang et al. 2023b). 

6 Implementation and Technology Transfer 

The models and their applications are the first stage of a two-stage project, which 

NCDOT is supporting as part of project RP2025-03. This report presents the first stage, i.e., the 

ability to measure water level in stormwater culverts; and the follow-up project aims at extending 

these capabilities to measure discharge, including velocity. The overall goal is to provide a user 

ready system that NCDOT personnel can use on a routine basis to monitor stormflow using 

cameras in the field. 
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